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1  |   INTRODUCTION

Humans know much more than is available at any one mo-
ment in time – as examples, you might forget a technical 
term only for it to pop to mind later, recall only the first letter 
of an acquaintance’s name, or see a robin without immedi-
ately thinking of its weight (though you could estimate it if 
needed). Oftentimes knowledge comes to mind automati-
cally, even when instructed to ignore meaning (e.g., Stroop 
task; MacLeod, 1991) and other times retrieval fails (e.g., tip-
of-the-tongue experiences; Brown, 1991). Depending on the 
context, different features of a given object or concept take on 
salience; for example, you can focus on how a word sounds or 

on its definition (i.e., levels of processing; Craik & Lockhart, 
1972). We are adept at resolving lexical ambiguities, quickly 
interpreting the word “bank” differently depending on 
whether we are thinking of rivers or money (e.g., Swinney 
& Hakes, 1976). While decades of behavioral evidence doc-
ument the flexible use of knowledge, previous neuroimaging 
studies target semantic processing, not differential activa-
tion of underlying representations (Binder, Desai, Graves, & 
Conant, 2009). We used representational similarity analysis 
(RSA) to examine how knowledge is represented in the brain, 
as well as whether different goals influence the activation of 
these representations.

Representational similarity analysis allows us to take a 
multivariate approach to quantifying the semantic distance be-
tween stimuli (Kriegeskorte, Mur, & Bandettini, 2008). Within 
a given brain region or searchlight sphere, this method contrasts 
the voxel-level activity associated with pairs of stimuli, such as 
pictures of objects (Connolly et al., 2012) or words (Carota, 
Kriegeskorte, Nili, & Pulvermüller, 2017). This results in a 
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brain representational dissimilarity matrix (RDM), which we 
can compare to the RDM obtained from a given model (e.g., 
category membership of objects, semantic similarity among 
words). Correlating brain and model RDMs tells us whether 
a voxel “codes for” or disregards distinctions between items 
along the specified dimension. This technique allows com-
parisons of semantic structures across modalities and exper-
imental conditions (Devereux, Clarke, Marouchos, & Tyler, 
2013). RSA has even demonstrated the emergence of new rep-
resentations following learning of novel objects (Clarke, Pell, 
Ranganath, & Tyler, 2016), but little work has explored repre-
sentational differences as a function of task goals.

The current study tested the extent to which two tasks acti-
vated representations reflecting semantic structure, as measured 
by word co-occurrence statistics. After studying known (e.g., 
The capital of France is Paris) and unknown (e.g., The inhabit-
able part of the world is the ecumene) facts outside the scanner, 
participants alternated between a semantic (is this statement true 
or false) and an episodic (i.e., is this statement old or new) task. 
The recognition memory test likely activates knowledge (e.g., 
Jacoby, Shimizu, Daniels, & Rhodes, 2005; Morris, Bransford, 
& Franks, 1977) without requiring participants to evaluate it; 
judging truth explicitly encourages both steps. Given that we 
carefully matched the conditions (i.e., same ratio of old/new and 
known/unknown facts, 6-point response scale), any differences 
in activated representations reflect the goals at hand. We pre-
dicted that activity patterns would correlate more with semantic 
structure in the semantic than the episodic task, in regions previ-
ously associated with semantic memory: ventromedial prefron-
tal cortex, posterior cingulate, and left-lateralized inferior frontal 
gyrus, ventral parietal cortex, lateral and anterior temporal cor-
tex, parahippocampal cortex, and fusiform gyrus (Binder et al., 
2009; Visser, Jefferies, & Ralph, 2010).

2  |   MATERIALS AND METHODS

2.1  |  Participants
The Duke University Institutional Review Board approved 
all procedures. Thirty-one native English speakers from Duke 
University and the surrounding communities participated for 
monetary compensation. Seven participants were excluded 
(three due to technical malfunctions with the scanner or test-
ing computer, two fell asleep, one was at chance, and another 
failed to use the full scale). The final sample included 24 par-
ticipants (age M = 23.17, SEM = 0.68; education M = 15.33, 
SEM = 0.41; 10 female).

2.2  |  Materials
Materials consisted of 360 trivia statements collected from 
the Internet that referred to known or unknown facts. One 
third of the sentences were known facts (e.g., The capital of 

Spain is called Madrid), and the remaining two-thirds com-
prised of unknown facts (e.g., The inhabitable part of the 
world is the ecumene) and unknown facts with a matching 
false framing (e.g., The inhabitable part of the world is the 
toponym) that referred to a plausible, but incorrect, alterna-
tive (counterbalanced across participants). The false state-
ments address another research question (Wang, Brashier, 
Wing, Marsh, & Cabeza, 2016, 2018) and were excluded 
from the RSA analysis. Given that true unknown items still 
invoked familiar concepts (e.g., that a part of the world is 
inhabitable), we included true unknown items.

Pilot participants (N = 47) rated these items from one 
(definitely false) to six (definitely true); they reliably and con-
fidently rated the known facts as true (i.e., 5 =  probably true 
or 6 =  definitely true responses from >90% of participants) 
and the unknown facts as unknown (i.e., 3 =  guess false or 
4 =  guess true responses from >75% of participants).

2.3  |  Procedure
Following informed consent, participants incidentally en-
coded (outside the scanner) 180 statements twice each by rat-
ing their interest on a 6-point scale from very uninteresting 
to very interesting. Each statement appeared for 4 s, followed 
by a fixed 1 s interstimulus interval fixation. Participants then 
entered the scanner where they alternated between a semantic 
task (i.e., is this statement true or false) and an episodic task 
(i.e., is this statement old or new) in four separate counterbal-
anced ABBA event-related runs. Participants responded on 
a 6-point scale (order counterbalanced across participants) 
in both the semantic (definitely false, probably false, guess 
false, guess true, probably true, definitely true) and episodic 
(definitely new, probably new, guess new, guess old, prob-
ably old, definitely old) tasks. In each run, participants rated 
30 old unknown, 30 new unknown, 15 old known, and 15 
new known statements. Each statement appeared for 5 s with 
a jittered (mean = 3 s; range: 1–8 s) interstimulus interval 
fixation. The jitter, as well as the randomization of trials, 
was calculated using the FMRI Toolbox (https://source-
forge.net/projects/fmri-toolbox/files/optimize_design/1.1) 
 based on the Genetic Algorithm (Wager & Nichols, 2003).

2.4  |  RDM construction
We constructed a model RDM of semantic dissimilarity for 
the facts using the website cortical.io. Cortical.io utilizes an 
unsupervised machine learning algorithm to encapsulate the 
entirety of semantic space (trained on Wikipedia) into a vec-
tor of 16,384 co-occurring concepts, or ‘semantic contexts’ 
(Webber, 2015). To calculate semantic similarity, the soft-
ware extracts the key words of each fact (e.g., nouns) and 
identifies the semantic contexts (in the vector of 16,384) 
associated with those key words (i.e., a binary ‘semantic 

https://sourceforge.net/projects/fmri-toolbox/files/optimize_design/1.1
https://sourceforge.net/projects/fmri-toolbox/files/optimize_design/1.1


      |  3WANG et al.

fingerprint’ that is visualized with a 1282 matrix). Then, the 
dissimilarity (1-cosine similarity) between the semantic fin-
gerprint for each pair of facts is calculated (i.e., where 0 =  
identical sentences). See Figure 1 for three representative 
semantic fingerprints that illustrate shared and unique se-
mantic contexts between facts, and Table 1 for a representa-
tive subset of pairwise dissimilarity values. This ‘semantic 
fingerprint’ method is relatively new, but has successfully 
grouped similar firms based on their business descriptions 
(Ibriyamova, Kogan, Salganik-Shoshan, & Stolin, 2017) 
and academic authors based on the content of their publica-
tions (Han et al., 2017). Thus, it provides a useful tool for 
extracting semantic similarity beyond just a single word. An 
in-depth examination of the advantages of this method is be-
yond the scope of the current study, but for a discussion, see 
Webber (2016).

We conducted an additional control analysis to ensure that 
low-level visual similarity could not explain any observed 
effects. A separate model RDM was created by taking the 
absolute value of the difference in character count between 
each pair of facts (i.e., a measure of low-level visual similar-
ity), and this RDM was then correlated with the brain RDM 
separately in each task.

2.5  |  Image acquisition and analysis
Images were collected on a 3T General Electric scanner 
with an 8-channel head coil at the Duke University Brain 
Imaging and Analysis Center. Functional MRI (FMRI) im-
ages were acquired using a SENSE spiral sequence (64 × 64 
matrix, repetition time = 2000 ms, echo time = 27 ms, field 
of view  = 24 cm, flip angle = 60°) and consisted of 34 
axial slices acquired in an interleaved fashion. Slice thick-
ness was 3.8 mm, resulting in 3.75 × 3.75 × 3.8 mm voxels. 

Additionally, high-resolution structural images were col-
lected using a 3D, T1-weighted FSPGR sequence (256 × 256 
matrix, 166 slices, 1 mm isotropic voxels).

Data were preprocessed with SPM12 (Wellcome Trust 
Centre for Neuroimaging). After discarding the first three vol-
umes of each run, the functional data for each participant were 
slice-time corrected, realigned, and coregistered to their re-
spective anatomical images. The anatomical images were then 
segmented into separate gray and white matter images that 
were used to normalize the functional and anatomical images 
into MNI space. Lastly, the normalized functional data were 
denoized using the DRIFTER toolbox (Särkkä et al., 2012).

Statistical analyses were performed in SPM12 using the 
general linear model. A high-pass filter of 128 sec and grand 
mean scaling were applied to the data, and serial correla-
tions in the time series were accounted for using the autore-
gressive model (AR[1]). For the univariate analysis, eight 
separate conditions of interest – old and new known and un-
known statements seen during the episodic and the semantic 
tasks – were modeled on the smoothed data (8-mm isotropic 
FWHM Gaussian filter). For our RSA analysis, each fact was 
modeled in a separate general linear model using the Least 
Squares - Separate approach (one regressor for the trial of 
interest, and one nuisance regressor for all other trials) on the 
unsmoothed data, yielding first-level single-trial beta images 
for each trial in each participant (Mumford, Turner, Ashby, & 
Poldrack, 2012). Other covariates of no interest included the 
six motion parameters estimated during realignment, base-
line and session effects, global mean, and motion outliers 
obtained from the Artifact Detection Toolbox (http://www.
nitrc.org/projects/artifact_detect), and white matter and CSF 
signal time courses.

A paired sample t test examined the univariate differ-
ence between episodic and semantic trials. For the RSA 

F I G U R E   1   A visual representation of the semantic fingerprints for three facts. The overlap between each fact reflects common semantic 
contexts 
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analysis, Spearman’s correlations were computed between 
each model RDM (e.g., the 1-cosine similarity between 
facts) and the brain RDM (i.e., the pairwise correlations of 
the single trial betas) for each participant using an in-house 
searchlight script (https://github.com/brg015/mfMRI_v2/) 
with a 3-voxel searchlight sphere, separately for the se-
mantic and episodic tasks. That is, within each searchlight 
sphere, the brain RDM was correlated with the cortical.
io RDM separately for trials in each task (Kriegeskorte 
et al., 2008). Similarly, the brain RDM was correlated 
with the character count RDM separately for each task. 
For group analyses, these correlation maps were then spa-
tially smoothed (8-mm isotropic FWHM Gaussian filter) 
and analyzed with one-sample and paired sample t tests. 
All analyses were corrected for multiple comparisons with 
3dClustSim (version 18.0.11) using an uncorrected thresh-
old of p < 0.001 and a cluster extent of 72 voxels (for a 
discussion of cluster-level corrections, see Slotnick, 2017).

To compare our findings to existing analyses of semantic 
memory, we then uploaded the group correlation maps from the 
semantic RSA analysis into Neurovault, a public repository of 
neuroimaging data (Gorgolewski et al., 2015). This allowed us 
to quantitatively compare our pattern of results to meta-analysis 
maps from Neurosynth, a database of over 10,000 FMRI stud-
ies that allows for large-scale analyses of neuroimaging data 
(Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011).

3  |   RESULTS

3.1  |  RSA results
As shown in Figure 2a, a network of regions including 
medial prefrontal cortex, posterior cingulate, and left-
lateralized inferior frontal gyrus, superior frontal gyrus, 
ventral parietal cortex, lateral and anterior temporal cortex, 
posterior hippocampus and parahippocampal cortex, and 
fusiform gyrus exhibited significant correlations with our 
semantic RDM during the semantic task. These regions are 
consistent with meta-analyses of regions activated during 
semantic memory tasks (Binder et al., 2009; Visser et al., 
2010). In contrast, no suprathreshold clusters exhibited 
significant correlations during the episodic task. A paired 
sample t test indicated that correlations were stronger for 
the semantic than the episodic task in posterior cingulate, 
medial prefrontal cortex, left anterior temporal cortex, and 
right dorsolateral prefrontal cortex (Figure 2b).

In comparison, the character count RDM yielded sig-
nificant correlations in bilateral visual cortex in both the 
semantic (Figure 3a) and the episodic (Figure 3b) tasks. 
A paired sample t test revealed no significant differences 
between the two tasks, suggesting that they did not dif-
fer in the extent to which they evoked low-level visual 
processing.

T A B L E   1   Representative subset of pairwise dissimilarity (1-cosine similarity) values derived from cortical.io. Green, low dissimilarity; 
Yellow, high dissimilarity [Colour figure can be viewed at wileyonlinelibrary.com]

https://github.com/brg015/mfMRI_v2/
www.wileyonlinelibrary.com
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3.2  |  Comparison to existing studies
To better understand the pattern of observed correla-
tions, we compared our group correlation maps from 
the semantic RSA analysis to Neurosynth meta-analysis 
maps (Yarkoni et al., 2011). Figure 2c shows the 
Neurosynth meta-analysis map for the term semantic, 
which was the term most strongly associated with our 
RSA results during the semantic task. Table 2 shows 
the 10 strongest correlations between Neurosynth 
meta-analysis maps (excluding anatomical regions 
or networks, e.g., posterior cingulate) and our group 
map for both the semantic task (http://neurosynth.org/
decode/?neurovault=52941), and the episodic task 
(http://neurosynth.org/decode/?neurovault=52945).

Notably, the terms most strongly associated with our 
group map for the episodic task also related to semantic 
memory and/or language, but at a lower magnitude (e.g., 
0.16 vs. 0.40 for the term semantic). Thus, our pattern of 
RSA results not only complement previous meta-analyses 
of semantic memory (Binder et al., 2009; Visser et al., 
2010), but also are similar to data-driven meta-analyses 
derived from Neurosynth.

3.3  |  Univariate results
A paired sample t test between episodic and semantic trials 
revealed greater activity for semantic than episodic trials in 
left inferior and superior frontal gyrus, and greater activity 
for episodic than semantic trials in right prefrontal cortex and 

F I G U R E   2   (a) Regions exhibiting significant correlations with the semantic representational dissimilarity matrix (RDM) during the semantic 
task. No suprathreshold clusters were observed with this RDM during the episodic task. (b) Paired sample t test showing stronger correlations for 
the semantic than the episodic task. (c) Neurosynth meta-analysis map for the term semantic. (d) Paired sample t test showing greater univariate 
activity for semantic than episodic trials (warm colors) and for episodic than semantic trials (cool colors) 

http://neurosynth.org/decode/?neurovault=52941
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bilateral parieto-occipital cortex (Figure 2d), suggesting that 
differences between tasks in the semantic RSA results were 
not due to univariate activity differences.

4  |   DISCUSSION

The present research demonstrates that changing one’s goals 
influences the extent to which neural activation corresponds 
to semantic structure. When explicitly encouraged to retrieve 
and evaluate relevant facts (semantic task), participants ex-
hibited activity in distributed regions implicated in semantic 
memory that correlated with “semantic space.” This mapping 
was absent when participants made old/new recognition judg-
ments (episodic task). Notably, the correlations during the 
episodic task still resemble “semantic” meta-analysis maps 

from Neurosynth, but to a lesser degree than in the semantic 
task. A direct correlation of the two maps (https://www.neu-
rovault.org/images/compare/52941/52945) reveals highly 
overlapping semantic structures, regardless of whether peo-
ple attended to truth or oldness (occipital cortex: r = 0.65, 
parietal cortex: r = 0.58, temporal cortex: r = 0.48, frontal 
cortex: r = 0.45). In other words, people retrieved relevant 
knowledge even when making recognition judgments, just to 
a lesser extent than during truth judgments.

Crucially, our results are consistent with evidence that mul-
tivariate data are not merely a byproduct of univariate activity 
differences (Jimura & Poldrack, 2012). Within regions where ac-
tivation patterns correlated with semantic structure during truth 
judgments, a range of univariate patterns emerged. Posterior re-
gions exhibited greater univariate activity for the episodic than 
the semantic task, and left frontal areas showed the opposite pat-
tern; no differences emerged in temporal and parietal regions, 
even at a relatively liberal threshold (p < 0.05, uncorrected). 
Additionally, a control RSA of character count revealed signif-
icant correlations in visual cortex in both tasks, suggesting that 
there are no discernible confounds between them.

Behavioral work clearly shows that people do not al-
ways access their own knowledge – marginal knowledge is 
stored in memory, but cannot be retrieved (e.g., foreign vo-
cabulary words after a class ends; Berger, Hall, & Bahrick, 
1999). Even to the extent that facts are accessible, they are 
not always successfully applied, such as when people fail 
to notice any problem with the question, How many an-
imals of each kind did Moses take on the ark? (Erickson 
& Mattson, 1981). Understanding the neural basis of these 
phenomena is crucial, since there are important down-
stream consequences. Failing to notice a contradiction 
with stored knowledge (e.g., that Noah, not Moses, took 
animals on the ark) makes it more likely to be repeated 

F I G U R E   3   Regions exhibiting significant correlations with the character count representational dissimilarity matrix (RDM) (a) during the 
semantic task and (b) during the episodic task 

T A B L E   2   Top 10 strongest correlations between semantic RSA 
maps for both tasks and meta-analysis maps from Neurosynth

Term Semantic Episodic No of studies

Semantica 0.400 0.164 844

Language 0.378 0.184 855

Word 0.361 0.192 782

Words 0.361 0.182 778

Sentence 0.324 0.156 266

Lexical 0.316 0.158 272

Readingb 0.308 0.194 427

Sentences 0.306 0.121 307

Phonological 0.304 0.152 310

Syntactic 0.289 0.149 145
aStrongest correlation with the semantic task. bStrongest correlation with the epi-
sodic task. 

https://www.neurovault.org/images/compare/52941/52945
https://www.neurovault.org/images/compare/52941/52945


      |  7WANG et al.

later (Bottoms, Eslick, & Marsh, 2010). On the flip side, 
successfully bringing related knowledge to bear allows us 
to organize new information (e.g., Bransford & Johnson, 
1972) and better remember it later (i.e., schematic support; 
Castel & Craik, 2003).

While neuroimaging studies identify brain regions that 
support knowledge retrieval, the focus is often on process 
rather than representation. These studies reveal a common 
network supporting the retrieval of facts, recent instances, 
and personal memories (Burianova, McIntosh, & Grady, 
2010), as well as point to the crucial role the ventromedial 
prefrontal cortex plays in schema-based learning (Gilboa 
& Marlatte, 2017). More recently, however, RSA revealed 
the “semantic atlas” used to extract meaning from speech 
(Huth, de Heer, Griffiths, Theunissen, & Gallant, 2016). 
Similar to these characterizations of the representations un-
derlying language comprehension (e.g., Carota et al., 2017), 
our work suggests that current goals differentially activate 
the representations of facts and confirms the importance 
of multivariate approaches when considering knowledge 
retrieval.
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